
International Journal of Heat and Mass Transfer 47 (2004) 3017–3030

www.elsevier.com/locate/ijhmt
Cavity flow in a porous medium driven by differential heating

P.G. Daniels *, M. Punpocha 1

Centre for Mathematical Science, City University, Northampton Square, London, EC1V 0HB, UK

Received 28 March 2003; received in revised form 3 March 2004
Abstract

This paper describes flow through a porous medium in a two-dimensional cavity driven by differential heating of the

upper surface. The lower surface and sidewalls of the cavity are thermally insulated and the main emphasis is on the case

where the temperature distribution at the upper surface is monotonic, resulting in a single-cell circulation. Numerical

results for general values of the Darcy–Rayleigh number R and the cavity aspect ratio L are compared with theoretical
predictions for the small Darcy–Rayleigh number limit ðR ! 0Þ where the temperature field is conduction-dominated,
and an approximate theory for the large Darcy–Rayleigh number limit ðR ! 1Þ where convection is significant. In the
latter case a horizontal boundary-layer structure is identified near the upper surface. This conveys fluid to the cold end of

the cavity where it descends in a narrow vertical jet in the corner. The temperature is almost constant throughout the

remainder of the cavity, and heat transfer arguments and boundary-layer theory are used to predict its value.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Porous media play an important role in many topical

areas of application including geothermal energy sys-

tems, oil and gas recovery, the spread of pollution in

groundwater and cavity wall insulation. Previous studies

of thermal convection in porous media can be divided

into two main groups, those where the heating is from

below and flow is generated typically by an instability

mechanism of the type first discussed by Lapwood [1]

and those where the heating is from the side and hori-

zontal thermal gradients generate motion. In the latter

case, most previous studies have been concerned with

the case of a two-dimensional cavity where the vertical

walls of the cavity are maintained at different constant

temperatures. For a porous medium governed by Dar-

cy’s law there are two main parameters, the aspect ratio

L of the cavity (width/depth) and the Darcy–Rayleigh
number R which is a non-dimensional measure of

buoyancy forces relative to frictional forces (see (4)).

For the side-heated cavity, extensive numerical solu-

tions have been reported in [2–4], and experimental
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investigations have also been carried out [5–8]. Weber[9]

considered the large Darcy–Rayleigh number structure

(R ! 1 at fixed L) for the side heated cavity with insu-
lated upper and lower surfaces, demonstrating the exis-

tence of vertical boundary layers of thickness OðR�1=2Þ,
whilst Walker and Homsy [10] considered the flow

properties for large aspect ratio L and in the large and
small R limits for fixed L. Blythe, Daniels and Simpkins
[11] considered the structure of the vertical boundary

layers near the corners in the large R limit enabling

subsequently a double horizontal boundary-layer struc-

ture, consisting of layers of thickness OðR�1=4Þ and
OðR�5=16Þ to be identified [12]. Further asymptotic

structures in side-heated shallow and tall cavities have

been discussed in [13–16].

Other related work involving horizontal thermal

gradients includes the horizontal boundary-layer analy-

sis of Cheng and Chang [17] and Chang and Cheng [18]

who considered similarity solutions of the boundary-

layer equations on a heated horizontal wall, and the

stability of porous media flows on horizontal surfaces

has been considered by Rees and Bassom [19,20]. Porous

media boundary-layer flows on heated vertical surfaces

have been studied in [21–25] and flows driven by thermal

gradients in corner regions in [26–28]. Further examples

and references are given by Nield and Bejan [29].
ed.



Nomenclature

d cavity width

g acceleration due to gravity

h cavity height

K permeability

L cavity aspect ratio

Q heat flux

R Darcy–Rayleigh number

S non-dimensional temperature profile

T non-dimensional temperature

T � temperature

DT temperature differential

u, w non-dimensional velocity components

x, z non-dimensional coordinates

x�, z� coordinates

Greek symbols

b coefficient of thermal expansion

j thermal diffusivity

m kinematic viscosity

w non-dimensional stream function
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In the present work it is proposed to investigate

thermally-driven flow in a two-dimensional cavity where

the motion is driven by a temperature differential along

the upper surface and the other walls are thermally

insulated. Such flows are relevant in groundwater sys-

tems where there is uneven heating of the Earth’s surface

and in flows driven by localized heat sources such as the

magma chamber of a caldera [30]. The mathematical

problem is formulated in Section 2, with attention fo-

cused on the case of a monotonic temperature distribu-

tion along the upper surface. For small Darcy–Rayleigh

numbers the single-cell circulation is conduction-

dominated and in Section 3 the main features of the

solution are obtained for general aspect ratios L using a
perturbation analysis. Results for general Darcy–Ray-

leigh numbers up to R ¼ 5000 are obtained using an
explicit finite difference scheme and are described in

Section 4. Major emphasis is placed on the case of the

square cavity ðL ¼ 1Þ although results are also obtained
for other aspect ratios in the range 1=46 L6 4. One
of the main purposes of the numerical work is to

reveal the asymptotic structure of the solution that

emerges as R ! 1. In this limit it is found that the main
features of the flow and temperature fields occur in a

horizontal boundary layer near the upper surface and a

vertical boundary layer near the top of the sidewall at the

colder end. In Section 5 an approximate analytical

solution for the horizontal boundary layer is obtained by

neglecting the interaction with the vertical boundary

layer. By considering the heat flux through the upper

surface of the cavity, a prediction is obtained for the

temperature in the core region of the cavity, below the

horizontal boundary layer. The results are discussed in

Section 6.
2. Formulation

A two-dimensional rectangular cavity 06 x� 6 d,
06 z� 6 h is filled with a fluid-saturated porous medium.
The upper boundary z� ¼ h is held at temperature
T � ¼ T �
0 þ DT Sðx�=dÞ; ð1Þ

where the function Sðx�=dÞ varies monotonically from
zero at x� ¼ 0 to 1 at x� ¼ d. The vertical walls x� ¼ 0
and x� ¼ d and the bottom wall z� ¼ 0 are thermally
insulated. Subject to Darcy’s law and the Oberbeck-

Boussinesq approximation, steady two-dimensional

motion is governed by the non-dimensional equations

r2w ¼ �R
oT
ox

; ð2Þ

r2T ¼ oðT ;wÞ
oðx; zÞ ; ð3Þ

where wðx; zÞ is the stream function non-dimensionalized
by the thermal diffusivity j, T ðx; zÞ is the temperature
measured relative to T �

0 and non-dimensionalized by DT ,
ðx; zÞ are Cartesian coordinates non-dimensionalized by
h and R is the Darcy–Rayleigh number defined by

R ¼ KgbDTh=jm; ð4Þ

where K is the permeability, b is the coefficient of ther-
mal expansion, m is the kinematic viscosity and g is
the acceleration due to gravity. The non-dimen-

sional velocity components in the x, z directions are
given by

u ¼ ow
oz

; w ¼ � ow
ox

; ð5Þ

respectively.

The cavity walls are assumed to be impermeable, and

so the relevant boundary conditions are

w ¼ oT
ox

¼ 0 on x ¼ 0; L; ð6Þ

w ¼ oT
oz

¼ 0 on z ¼ 0 ð7Þ

and

w ¼ 0; T ¼ Sðx=LÞ on z ¼ 1: ð8Þ
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Solutions of the mathematical problem defined by (2),

(3) and (6)–(8) depend on the Darcy–Rayleigh number R
and the aspect ratio L ¼ d=h, and also on the specific
form of the temperature profile Sðx=LÞ at the upper
surface.
Fig. 1. Contours of T0 and w1 for the case L ¼ 1.
3. Solution for small Darcy–Rayleigh numbers

In this section the temperature profile Sðx=LÞ is taken
to have the simple form

Sðx=LÞ ¼ 1
2
ð1� cosðpx=LÞÞ; 06 x6 L; ð9Þ

so that the temperature T along the upper surface is

antisymmetric about the mean value 1
2
at x ¼ L=2. The

solution for small Darcy–Rayleigh numbers is obtained

by assuming a perturbation expansion in powers of R:

T ðx; zÞ ¼ T0ðx; zÞ þ RT1ðx; zÞ þ 
 
 
 ; ð10Þ

wðx; zÞ ¼ Rw1ðx; zÞ þ R2w2ðx; zÞ þ 
 
 
 ð11Þ

Substitution into (3) shows that at leading order the

temperature field T0 is governed by Laplace’s equation

o2T0
ox2

þ o2T0
oz2

¼ 0; ð12Þ

which must be solved subject to

oT0
ox

¼ 0 on x ¼ 0; L; ð13Þ

oT0
oz

¼ 0 on z ¼ 0; T0 ¼ Sðx=LÞ on z ¼ 1: ð14Þ

The solution is thus dominated by conduction and is

readily found to be

T0 ¼
1

2
ð1� sechðp=LÞ cosðpx=LÞ coshðpz=LÞÞ: ð15Þ

From terms of order R in (2), the leading term w1 in the
stream function satisfies Poisson’s equation

o2w1
ox2

þ o2w1
oz2

¼ � oT0
ox

; ð16Þ

which must be solved subject to w1 ¼ 0 on the bound-
aries. The solution is found to be

w1 ¼
1

4
ð1� zÞsechðp=LÞ sinhðpz=LÞ sinðpx=LÞ: ð17Þ

The leading order terms T0 � 1
2
and w1 are seen to be odd

and even functions of x� 1
2
L, respectively, and their

contours are shown in Fig. 1 for the case L ¼ 1. The
conductive temperature field drives a single-cell circula-

tion with upward motion on the hotter side and down-

ward motion on the colder side. The maximum value of

the leading order stream function, which defines the
centre of circulation, is w1 ¼ 0:0288277 and occurs at
x ¼ 1

2
L, z ¼ 0:689924.

From Eq. (3), equating coefficients of R shows that
the first-order temperature field T1 satisfies Poisson’s
equation

o2T1
ox2

þ o2T1
oz2

¼ oT0
ox

ow1
oz

� oT0
oz

ow1
ox

; ð18Þ

which must be solved subject to

oT1
ox

¼ 0 on x ¼ 0; L; ð19Þ

oT1
oz

¼ 0 on z ¼ 0; T1 ¼ 0 on z ¼ 1: ð20Þ

The solution is

T1 ¼
1

256
sech2ðp=LÞ 4ð1

�
� zÞcoshð2pz=LÞ

þ 2L
p
ðsinhð2pz=LÞ� sinhð2p=LÞÞ

þ 2c coshð2pz=LÞ
�

�L
p
e�2pz=L

þ 2ðz coshð2pz=LÞþ 2ð1� zÞÞ
�
cosð2px=LÞ

�
; ð21Þ

where

c ¼ L
p
ð1þ e4p=LÞ�1 � 1: ð22Þ

From Eq. (2), equating coefficients of R2 shows that w2
satisfies Poisson’s equation

o2w2
ox2

þ o2w2
oz2

¼ � oT1
ox

; ð23Þ

to be solved subject to w2 ¼ 0 on the boundaries. The
solution is



Fig. 2. Contours of T1 and w2 for the case L ¼ 1. R = 5

R = 20

Fig. 3. Isotherms and streamlines given by the two-term small

Darcy–Rayleigh number approximation for R ¼ 5 and R ¼ 20
with L ¼ 1.
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w2 ¼
1

256
sech2ðp=LÞ 1

2
z2 sinhð2pz=LÞ

�

þ ze2pz=L
c
2

�
� L
8p

�
þ ze�2pz=L

3L
8p

�
� c
2

�

þ 2L
p
ðz� 1þ coshð2pz=LÞÞ

� d sinhð2pz=LÞ
�
sinð2px=LÞ; ð24Þ

where

d ¼ 2L
p
cothð2p=LÞ þ c

2

��
þ 1
4
� L
8p

�
e2p=L

þ 3L
8p

�
� c
2
� 1
4

�
e�2p=L

�
cosechð2p=LÞ: ð25Þ

Contours of T1 and w2, which are even and odd func-
tions of x� 1

2
L, respectively, are shown in Fig. 2 for the

case L ¼ 1. Although the leading order velocity and
temperature fields have symmetry about the centreline

x ¼ 1
2
L of the cavity, the correction terms (24) and (21)

destroy this symmetry, as can be seen from contour plots

of the overall temperature and stream function (10) and

(11) for R ¼ 5 and R ¼ 20 in Fig. 3. As the Darcy–
Rayleigh number increases, the centre of circulation

shifts towards the upper cold corner, while the isotherms

move around towards the hotter side.
4. Numerical solution for general Darcy–Rayleigh num-

bers

The steady-state system (2), (3) and (6)–(8) is elliptic

but a simple method of finding solutions is to introduce

artificial time derivatives

ow
ot

¼ r2w þ R
oT
ox

; ð26Þ
oT
ot

¼ r2T � oðT ;wÞ
oðx; zÞ ð27Þ

to obtain a system which is parabolic in time. This al-

lows a numerical solution to be found by a straightfor-

ward marching procedure in time, with the required

steady-state results obtained in the limit of large time.

An explicit forward difference method was used to solve

(26),(27) and (6)–(8) together with an initial condition

which was usually taken as T ¼ w ¼ 0 at t ¼ 0. The
equations were discretized on a uniform grid using

standard second-order accurate central difference

approximations for the spatial derivatives in the equa-

tions and forward differences for the time derivatives. In

discretizing the boundary conditions for oT=ox and
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oT=oz second-order accuracy was maintained by using
a quadratic interpolation to evaluate T on the bound-
aries. The time step was chosen small enough to ensure

numerical stability. Various checks were carried out with

different spatial grid sizes to test the accuracy and tem-

poral convergence of the scheme, and most of the results

described here were obtained with step sizes of 0.01 in x
and z and a time step of 10�5. Typically convergence of
the solution to its steady-state form occurred within a

time t ¼ 2 although this decreased with increasing

Darcy–Rayleigh number. As an additional check on

accuracy, the total heat flux at the upper boundary

Q ¼
Z L

0

oT
oz

ðz ¼ 1Þdx ð28Þ

was monitored using the trapezium rule with the value

of oT=oz calculated from a quadratic interpolation of T .
R = 20

R = 200

Fig. 4. Isotherms and streamlines of the steady-state numerical soluti
Since the three lower walls are thermally insulated it

follows from (3) that Q should be zero for the steady-

state solution; in practice for L ¼ 1 its steady-state value
rose from 0.0027 at R ¼ 20 to 0.041 at R ¼ 500, repre-
senting relative errors of 0.14% and 0.7%, respectively,

compared with the maximum steady-state value of

oT=oz on the upper surface.

4.1. Results for a cosine temperature profile

Initially results were obtained for L ¼ 1 with the co-
sine profile (9) on the upper surface. Fig. 4 shows results

for R ¼ 20; 200; 1500 and 5000. For R ¼ 20, the stream-
lines and isotherm patterns are in excellent agreement

with the two-term analytical prediction shown in Fig. 3.

As R increases, the centre of circulation moves towards
the cold end of the upper boundary and the main
R = 1500

R = 5000

on for the cosine profile with R ¼ 20; 200; 1500; 5000 and L ¼ 1.
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temperature variation occurs near the upper surface. Fig.

5 shows the slip velocities on the four walls and indicates

maximum flow speeds along the upper surface and at the
Fig. 5. Slip velocities on the four walls of the cavity at various valu

profile with L ¼ 1.

Fig. 6. Local heat transfer through the upper surface of the cavity for

the cosine profile with L ¼ 1.
top of the vertical wall on the cold side at large R. The
local heat transfer through the upper surface is shown in

Fig. 6; heat enters the cavity through the hotter part of
es of R from the steady-state numerical solution for the cosine

various values of R from the steady-state numerical solution for
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the upper surface and leaves through the colder part,

causing the fluid to lose buoyancy and descend rapidly in

a narrow region near the vertical wall at large R; it then
returns to the neighbourhood of the upper surface via a

relatively slow circulation in the remainder of the cavity.

The temperature in this region below the main thermal

variation becomes almost constant as R increases, but
does not approach the minimum temperature of the

upper surface. Instead, it appears to approach a finite

non-zero value of approximately 0.1, that is a tempera-

ture in excess of the minimum temperature by about 10

percent of the temperature difference imposed at the

upper surface.
4.2. Results for a quadratic temperature profile

Results were also obtained for the quadratic tem-

perature profile
R=30

Fig. 7. Isotherms and streamlines of the steady-state numerical so
Sðx=LÞ ¼ 1� 1
�

� x
L

�2
ð29Þ

at the upper surface. Again this is monotonic in x and is
studied partly because it allows an exact solution of the

horizontal boundary-layer equations in the high Darcy–

Rayleigh number limit, to be discussed in Section 5. This

profile is also of interest in that unlike the cosine profile

it is linear as it approaches the cold end ðx ¼ 0Þ,
implying a more sudden drop in temperature there and

thus a more vigorous motion. Mathematically, it also

implies a weak singularity in the thermal field in the

corner ðx ¼ 0; z ¼ 1Þ because the value of oT=ox must
adjust from 2L�1 given by (29) on z ¼ 1 as x ! 0þ to

zero on the vertical wall x ¼ 0.
The behaviour of the solution is qualitatively similar

to that for the cosine profile. At small values of R a series
expansion (10) and (11) is again valid but now the

leading terms
R=1500

lution for the quadratic profile with R ¼ 30, 1500 and L ¼ 1.
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T0 ¼
2

3
þ
X1
n¼1

Cn cosðnpx=LÞ coshðnpz=LÞ; ð30Þ

w1 ¼
1

2
ðz� 1Þ

X1
n¼1

Cn sinðnpx=LÞ sinhðnpz=LÞ; ð31Þ

where

Cn ¼ � 4

ðnpÞ2
sechðnp=LÞ; ð32Þ

do not possess symmetry about x ¼ 1
2
L. The centre of the

single-cell circulation where w1 attains its maximum
value of 0.02342 is at x ¼ 0:44, z ¼ 0:69 when L ¼ 1 and
is thus closer to the cold end of the cavity than in the

previous case. Fig. 7 shows steady-state isotherms and

streamlines obtained from the numerical scheme for a

square cavity at R ¼ 30 and R ¼ 1500. At large R, the
overall structure of the solution is similar to that of the

previous case although the eddy is centred a little closer

to the corner; below the main thermal variation at the

upper surface the almost constant temperature in the

cavity is significantly higher than before, at a level in

excess of the minimum temperature by about 23–24% of

the temperature difference along the upper surface.

Results were also computed for aspect ratios L of 1
4
, 1
2
,

2 and 4. The same general features are observed, al-

though for tall cavities (Fig. 8) the fact that the motion is

being driven from the upper surface is evident for all
R=30

Fig. 8. Isotherms and streamlines of the steady-state numerical so
values of R, with the centre of circulation always near
the upper boundary. For L ¼ 1

4
and R ¼ 5000, the tem-

perature below the thermal layer at the upper surface is

found to be around 0.279, whilst for the same Darcy–

Rayleigh number and L ¼ 1
2
, this near constant value is

about 0.251.

For shallow cavities (Fig. 9) the bottom boundary

has much more impact on the solution at general values

of R although for L ¼ 4 the development of the thermal
layer at the upper surface is eventually evident when R
exceeds 1500. At R ¼ 5000 the temperature along the
lower surface varies from 0.207 at x ¼ 0 to 0.236 at
x ¼ 4. For small values of R and large values of L the
isotherms align almost vertically in the middle section of

the cavity and the streamlines are approximately sym-

metrical about z ¼ 1
2
. This reflects the fact that the z

derivatives on the left-hand sides of (2) and (3) dominate

the x derivatives in this limit, and the relevant solution
throughout most of the cavity ð0 < x=L < 1; 06 z6 1Þ
for L � 1 is

T � 1� 1
�

� x
L

�2
; w � Rzð1� zÞ 1

�
� x
L

�
: ð33Þ
An inner solution near x=L ¼ 0 is necessary to allow w to
adjust to zero at the cold end wall, but the details are not

described here.

From the results presented here for general Darcy–

Rayleigh numbers and various aspect ratios, it is clear
R=1500

lution for the quadratic profile with R ¼ 30; 1500 and L ¼ 1
4
.



R=30

R=1500

Fig. 9. Isotherms and streamlines of the steady-state numerical solution for the quadratic profile with R ¼ 30; 1500 and L ¼ 4.
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that the solutions possess the same general features as R
increases, with the formation of a horizontal boundary

layer along the upper surface where the main tempera-

ture adjustment occurs, leaving the bottom part of the

cavity with an almost constant temperature in the limit

of large R. For the quadratic profile this temperature is
in the range 0.2–0.3, with the precise value only weakly

dependent on the aspect ratio L. For the cosine profile,
Table 1

Properties of the numerical solution for a square cavity with a

quadratic temperature profile at the upper surface

R T 1
2
; 1
2

	 

w 1

2
; 1
2

	 

wmax

lnwmax
lnR

5 0.6567 0.1006 0.1179 )1.3284
30 0.5916 0.5845 0.6997 )0.1050
200 0.3942 2.0341 3.0291 0.2092

500 0.3102 2.7641 5.0323 0.2600

1500 0.2517 3.4950 8.4403 0.2917

5000 0.2369 4.0844 13.8602 0.3087
the value is closer to 0.1. The main feature of the flow

pattern is the migration of the centre of circulation to-

wards the upper end of the colder sidewall as R in-

creases, with a jet-like motion forming locally there in

the limit of large R.
Table 1 gives values of both the temperature and

stream function at the centre of the cavity as functions

of R for the case L ¼ 1. It also shows the behaviour of
the maximum value of the stream function. Whereas

wð1
2
; 1
2
Þ and T ð1

2
; 1
2
Þ appear to approach finite limiting

values as R ! 1, the maximum stream function value is
found to be an increasing function of R.
5. An approximate theory for large Darcy–Rayleigh

numbers

In this section an approximate steady-state solution

is obtained in the limit of large Darcy–Rayleigh number

for the quadratic profile (29) by using an asymptotic



3026 P.G. Daniels, M. Punpocha / International Journal of Heat and Mass Transfer 47 (2004) 3017–3030
method to investigate the flow in a horizontal boundary

layer near the upper surface of the cavity. Although an

exact solution of the horizontal boundary-layer equa-

tions is found, it will be shown that it can only be re-

garded as an approximation to the leading-order

behaviour of the flow and temperature fields that emerge

in the limit as R ! 1. This is because it fails to take full
account of the flow near the cold end of the cavity and is

further discussed in Section 6.

Assuming the existence of a layer near the upper

surface where o=oz � o=ox, a balance of the dominant
terms in (2) and (3) as R ! 1 requires that w=z2 � RT=x
and T=z2 � Tw=xz. Since T and x are of order one within
the layer it follows that w and z must scale with R1=3 and
R�1=3, respectively. This is consistent with the numerical

calculations of the maximum stream function value

shown in Table 1. Thus, setting z ¼ 1� R�1=3�z, a steady-
state solution is sought in the form

T ðx; zÞ ¼ T ðx;�zÞ þ 
 
 
 ;
wðx; zÞ ¼ R1=3�wðx;�zÞ þ 
 
 
 ð34Þ

as R ! 1 and it follows from (2) and (3) that T and �w
satisfy the horizontal boundary-layer equations

o2�w
o�z2

¼ � oT
ox

;
o2T
o�z2

¼ o�w
ox

oT
o�z

� o�w
o�z

oT
ox

: ð35Þ

Boundary conditions for �w and T at the upper surface
are

�w ¼ 0; T ¼ 1� 1
�

� x
L

�2
on �z ¼ 0 ð36Þ

and at the lower edge of the layer it will be assumed that

o�w
o�z

! 0;
oT
o�z

! 0 as �z ! 1: ð37Þ

Because of the quadratic profile in (36), an exact solu-

tion of these equations and boundary conditions can be

found in the form

�w ¼ L1=3 1
�

� x
L

�
/0ðZÞ;

T ¼ h1ðZÞ � 1
�

� x
L

�2
h0ðZÞ; ð38Þ

where �z ¼ L2=3Z and the functions /0, h0 and h1 satisfy
the equations

/00
0 ¼ �2h0; h00

0 � 2/
0
0h0 þ /0h

0
0 ¼ 0; h00

1 ¼ �/0h
0
1

ð39Þ

with boundary conditions

/0 ¼ 0; h0 ¼ 1; h1 ¼ 1 on Z ¼ 0 ð40Þ

and

/0
0; h

0
0; h

0
1 ! 0 as Z ! 1: ð41Þ
Note that the solution (38) is consistent with the end

conditions �w ¼ oT=ox ¼ 0 at x ¼ L but does not satisfy
the equivalent boundary conditions at x ¼ 0; the exis-
tence of a vertical boundary layer near x ¼ 0 is discussed
in Section 6.

The system (39)–(41) is independent of the aspect

ratio L and its solution can be found as follows. Elimi-
nation of h0 yields a single fourth-order equation for /0
which upon integration and use of the fact that /0 ¼
oðZÞ as Z ! 1 gives

/000
0 þ /0/

00
0 �

3

2
/02
0 ¼ 0; ð42Þ

to be solved subject to

/0 ¼ 0; /00
0 ¼ �2 on Z ¼ 0; /0

0 ! 0 as Z ! 1:

ð43Þ

At the edge of the layer /0 has the behaviour

/0 � a� ke�aZ as Z ! 1; ð44Þ

where a and k are constants to be determined. These are
effectively fixed by satisfying the two boundary condi-

tions at Z ¼ 0. If the asymptotic solution (44) were valid
for all Z it would follow that k ¼ a ¼ 21=3 and the actual
solution of (42) and (43) was found by using this as an

initial guess in a Newton iteration. A fourth-order

Runge–Kutta scheme was used to integrate (42) inwards

from the form (44) at a suitable outer boundary Z ¼ Z1
and then the Newton iteration used to home in on the

zeros of /0ð0Þ and /00
0ð0Þ þ 2. The constants a and k

converged to the final values

a ¼ 1:141; k ¼ 1:021 ð45Þ

and the first derivative of /0 at the origin was found to
be

c ¼ /0
0ð0Þ ¼ 1:447: ð46Þ

Graphs of /0 and /0
0 are shown in Fig. 10, along with h0

which can now be found from the relation h0 ¼ � 1
2
/00
0.

Note that h0 ! 0 as Z ! 1.
Finally, h0

1 is found by integrating the third equation

in (39) to give

h0
1 ¼ �A exp

�
�
Z Z

0

/0 dZ
�
; ð47Þ

where A is an arbitrary constant. One further integration
then gives

h1 ¼ 1� AH1; ð48Þ

where

H1 ¼
Z Z

0

exp

�
�
Z Z

0

/0ðZ 0ÞdZ 0
�
dZ ð49Þ



Fig. 10. The horizontal boundary-layer functions /0, /
0
0, h0 and h1.
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and it follows that

h1 ! 1� Av0 as Z ! 1; ð50Þ

where

v0 ¼
Z 1

0

exp

�
�
Z Z

0

/0ðZ 0ÞdZ 0
�
dZ ¼ 1:472: ð51Þ

In order to find the constant A and thus complete the
horizontal boundary-layer solution, it is noted that, for

the overall steady-state solution in the cavity, the heat

flux Q at the upper boundary (defined by (28)) must

vanish. In the limit as R ! 1 the dominant contribution

to this integral must come from the horizontal bound-

ary-layer region, and so it follows that

Z L

0

oT
o�z

ðx; 0Þdx ¼ 0: ð52Þ

Substituting for T from (38) and performing the inte-

gration in x gives

h0
1ð0Þ �

1

3
h0
0ð0Þ ¼ 0 ð53Þ
Fig. 11. The temperature profile h1 � h0 at th
and since h0
1ð0Þ ¼ �A and

h0
0ð0Þ ¼ � 1

2
/000
0 ð0Þ ¼ � 3

4
ð/0

0ð0ÞÞ
2 ¼ � 3

4
c2; ð54Þ

it follows that

A ¼ 1
4
c2 ¼ 0:524: ð55Þ

This completes the solution for h1, which is shown in
Fig. 10. It is seen that

h1 ! b ¼ 1� 1
4
c2v0 ¼ 0:229 as Z ! 1: ð56Þ

This predicts a temperature in the cavity below the

horizontal layer which is constant and given to leading

order as R ! 1 by

T ðx; zÞ � b ¼ 0:229; ð57Þ

a result which is in reasonable accord with the numerical

findings of Section 4.

The overall temperature profile at the end x ¼ 0 of
the horizontal boundary layer is given by
e end of the horizontal boundary layer.



Fig. 12. Isotherms and streamlines of the horizontal boundary-layer solution.
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T ð0;�zÞ ¼ h1ðZÞ � h0ðZÞ ð58Þ

and is shown in Fig. 11. It reaches a maximum value of

T ¼ 0:313 at �z ¼ �z0 ¼ L2=3Z0 ¼ 0:96L2=3 and then de-

creases to the asymptotic value T � 0:229 as �z ! 1. The
corresponding stream function profile at x ¼ 0 is

�wð0;�zÞ ¼ L1=3/0ðZÞ ð59Þ

and reaches a maximum value of �w � 1:141L1=3 as
�z ! 1. The corresponding scaled horizontal velocity
�uð0;�zÞ ¼ �L�1=3/0

0, where /0
0 is shown in Fig. 10, is in

the negative x direction and feeds fluid entrained by the
horizontal layer into the cold corner. This inflow is

maximum at the upper surface and reduces to zero at the

bottom of the horizontal layer. Streamlines and iso-

therms of the horizontal boundary-layer solution are

shown in Fig. 12.
6. Discussion

Numerical and asymptotic solutions for cavity flow

in a porous medium driven by differential heating of the

upper surface have been found for a range of Darcy–

Rayleigh numbers. For a monotonic temperature dis-

tribution at the upper surface and thermally insulated

lower walls, a single-cell circulation is generated, the

centre of which moves to the upper cold corner of

the cavity as the Darcy–Rayleigh number increases. The

general features of the limiting structure as R ! 1 have

been confirmed by a boundary-layer analysis. In par-
ticular, the temperature distribution in the horizontal

boundary layer at the upper surface and the predicted

core temperature (57) are remarkably consistent with the

numerical calculations of Section 4. The streamlines of

the horizontal boundary-layer solution (Fig. 12) indicate

a flow drawn into the lower edge of the layer and then

conveyed to the cold end where it is expelled from the

layer. Here the comparison with the numerical calcula-

tions is less convincing, both in terms of the implied

existence of a region of predominantly upward velocity

below the thermal variation in the layer (not seen in the

numerical calculations) and the non-existence of a closed

eddy at the end of the layer (seen in the numerical cal-

culations). The reason for the discrepancy is now dis-

cussed.

The exact solution of the horizontal boundary-layer

equations found here imposes both a horizontal velocity

and a temperature profile at the end x ¼ 0 of the layer
which must be adjusted in order to achieve the boundary

conditions w ¼ oT=ox ¼ 0 on the sidewall of the cavity.
The vertical boundary layer needed to achieve this

adjustment occupies a narrow region with lateral scale

x � R�2=3 near the sidewall. The exponential decay of the

solution there to the horizontal boundary-layer profiles

T1ð�zÞ ¼ T ð0;�zÞ and w1ð�zÞ ¼ �wð0;�zÞ is given by the real
part of

expð�kð�zÞR2=3xÞ; ð60Þ

where

k ¼ k� ¼ w1 � ðw02
1 � 4T 0

1Þ
1=2

2
ð61Þ
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(see, for example, [11]) and the real part of k must be
positive. For the horizontal boundary-layer profiles (58)

and (59), w0
1 > 0 and T 0

1 > 0 when �z < �z0 so that both
roots (61) have positive real part (real if w02

1 > 4T 0
1 and

complex conjugates if w02
1 < 4T 0

1Þ. Thus it is possible
that both w1ð�zÞ and T1ð�zÞ can be specified when solving
the vertical boundary-layer equations in this region.

For �z > �z0, however, w
0
1 > 0 and T 0

1 < 0 so that kþ is

positive and k� is negative. Thus it can be expected that

at most one of the edge profiles w1ð�zÞ and T1ð�zÞ can be
specified when solving the vertical boundary-layer

equations in this region. For this reason, the horizontal

boundary-layer solution obtained in Section 5 cannot be

the correct one, as it determines both w1 and T1 in the
region �z > �z0. The resolution of this difficulty requires a
detailed study of the combined horizontal/vertical

boundary-layer systems and is considered in a separate

paper [31]. Nevertheless the approximate theory pre-

sented here provides an excellent approximation to both

the velocity and temperature fields in the upper section

of the horizontal boundary layer ð�z < �z0Þ and to the core
temperature.

Finally, it is worth mentioning some extensions and

applications of the present analysis. First, it is evident

through the transformation T ! 1� T , z ! 1� z and
w ! �w that the solutions obtained here also apply to a
cavity whose upper surfaces are thermally insulated

and whose lower surface is subject to a temperature

differential T ¼ 1� Sðx=LÞ. In this case the solution at
high Darcy–Rayleigh numbers is seen to consist of an

eddying motion centred on the lower hot corner, with

fluid rising in a narrow vertical jet locally. The asym-

metry of the flow field may be relevant to understanding

why relatively small regions of hot upwelling are ob-

served in many geothermal fields. Another extension of

the present work is to the case where the temperature

profile Sðx=LÞ is non-monotonic. For example, a profile
of the form (9) applied to the upper surface of an en-

larged cavity �L6 x6 L, 06 z6 1 (representing a tem-
perature differential with a minimum at the centre,

x ¼ 0) would generate a double-cell circulation formed
by exactly the same streamlines and isotherms in the

region 06 x6 L together with their reflections about

x ¼ 0 in the region �L6 x6 0. This is because the
centreline x ¼ 0, 06 z6 1 of the enlarged cavity is a line
of symmetry on which w ¼ oT=ox ¼ ow=ox ¼ 0, and is
therefore consistent with the boundary conditions (6)

applied at x ¼ 0.
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